

Name: _____

Date: _____

Algebra Challenge: Systems & Analysis

1. Reverse Engineering

Instead of solving given equations, demonstrate your mastery by constructing equations that fit specific criteria. Work backward from the solution.

Target: $x = -5$

Create a **two-step equation** that results in the solution $x = -5$. Your equation must include:

1. A multiplication or division operation
2. A subtraction operation

My Equation:

Proof (Solve your equation to check):

2. Analyzing Structure & Order

We often use "Reverse BEDMAS" to solve two-step equations, but is that the *only* way? Let's analyze the mathematical structure.

Experiment	Analysis
Consider the equation: $3x + 6 = 15$ Method A: Subtract 6 first, then divide by 3.	Does Method B work? Try it. Why is Method B generally riskier or harder to do mentally than Method A?

Method B: Divide the *entire* equation by 3 first, then subtract.

3. Critical Analysis 🕵️

The equation below was solved incorrectly. The student made a common conceptual error regarding negative coefficients.

Equation: $5 - 2x = 17$

Student Work:

1. $5 - 2x = 17 - 2x = 12$ (Subtracted 5) $x = 6$ (Divided by 2)

Identify the specific error in Step 3 and explain why it happened.

4. Applying Skills: Word Problems 📝

Now that we have analyzed how to avoid common mistakes, let's put our skills to the test in real-world scenarios. Solving word problems requires two major steps: **translating** the English words into a mathematical equation, and then **solving** for the unknown variable.

Step-by-Step Approach:

1. Identify what the question is asking for (this becomes your variable, like 'x'). Look for keywords: "more than" (+), "less than" (-), "times" (x), and "total" or "is" (=). Set up your balance: [Initial Amount] [Change] = [Final Result].

The Pizza Party Problem

Marcus and his 3 friends (4 people total) shared a large pizza. They also bought a bottle of soda for \$4.50. If their total bill was \$26.50, how much did each person pay for their share of the pizza?

Assume the soda cost was added to the total after the pizza was split.

Define your variable (x):

Write your equation:

Final Answer (x = ?):

1. **Which equation represents this scenario?** Sarah started with some money in her savings account. She withdrew \$20 each week for 4 weeks. Now she has \$120 left. Let 'm' be her starting amount.

- a) $m + 80 = 120$
- b) $m - 20 = 120$
- c) $m - 80 = 120$
- d) $4m - 20 = 120$

The Smartphone Plan:

A cell phone company charges a flat monthly fee of \$35 plus \$0.10 for every text message sent. If Chloe's bill last month was \$42.50, how many text messages (t) did she send? Show all your work.

Equation:

Steps to solve:

5. Mathematical Modeling

Real-world algebra isn't just about solving—it's about translation. Translate these scenarios into models.

The Constraint Problem:

A rectangle has a perimeter of 50 meters. The length is 5 meters less than twice the width.

Define your variable, write the equation, and determining the dimensions.

Variable defined:

Equation:

Solution:

The Inverse Task:

Create a realistic word problem that would be solved using the equation:

$$150 - 15x = 30$$

6. Abstract Generalization

Algebra is powerful because it works for *any* number. Look at the standard linear equation form below.

Solve the literal equation **$y = mx + b$** for **x** .
(Isolate x in terms of y , m , and b).

Answer Key

1. Reverse Engineering

Answers will vary. Example: $3x - 5 = -20$. $(3(-5)) - 5 = -15 - 5 = -20$.

2. Analyzing Structure & Order

Method B works ($x + 2 = 5$, so $x = 3$). It is riskier because students often forget to divide every term (like the 6) by 3, or it creates messy fractions if the numbers aren't compatible.

3. Critical Analysis

The student divided by positive 2 instead of negative 2. In the term ' $-2x$ ', the negative sign is attached to the coefficient. The correct step is $x = 12 / -2$, so $x = -6$.

4. Applying Skills: Word Problems

Answer:

Variable x = cost per person for pizza. Equation: $4x + 4.50 = 26.50$. Solve: $4x = 22.00$, so $x = \$5.50$ per person.

Multiple Choice:

1. $m - 80 = 120$. (Since $4 \text{ weeks} \times \$20 = \80 total withdrawn).

Equation: $35 + 0.10t = 42.50$.

Step 1: Subtract 35 from both sides: $0.10t = 7.50$.

Step 2: Divide by 0.10: $t = 75$ text messages.

5. Mathematical Modeling

Let w = width. Length = $2w - 5$. Equation: $2(w) + 2(2w - 5) = 50$. Solution: $w = 10$, $l = 15$.

Example: You have \$150. You spend \$15 per week on snacks. After how many weeks will you have \$30 left?

6. Abstract Generalization

$$x = (y - b) / m$$