

Name: _____

Date: _____

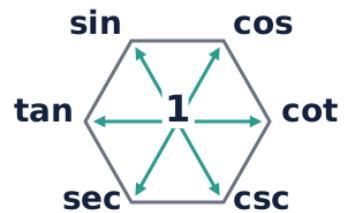
Trigonometric Identities: Advanced

Conceptual Foundations

True mastery of identities requires understanding their origins, not just memorizing the final forms. Instead of simply filling in blanks, derive the connections between these fundamental ratios.

Derivation Challenge:

Start with the primary Pythagorean Identity: $\sin^2\theta + \cos^2\theta = 1$. Show the algebraic steps required to transform this equation into the secondary identity: $1 + \tan^2\theta = \sec^2\theta$.



Reverse Engineering & Domain Analysis

In this section, you will construct expressions to meet specific criteria and analyze the subtle domain restrictions that often get lost during simplification.

Constraint Challenge:

Construct a trigonometric expression that simplifies to **1**, subject to the constraint that you must use **at least three different** trigonometric functions (e.g., sin, sec, cot) in your original expression.

Critical Analysis:

Consider the simplification: **(sec x ÷ csc x) = tan x.**

Algebraically, the result is valid. However, the domains of the left side and right side are not identical. Identify the values of x in the interval $[0, 2\pi]$ where the original expression is undefined but the simplified result ($\tan x$) is defined.

Extending Formulas

Optimization Strategy: The cosine double angle formula has three variations. When proving identities, choosing the variation that eliminates a constant term (like '1') usually leads to the most efficient proof.

Apply compound angle formulas to derive a 'Triple Angle' identity.

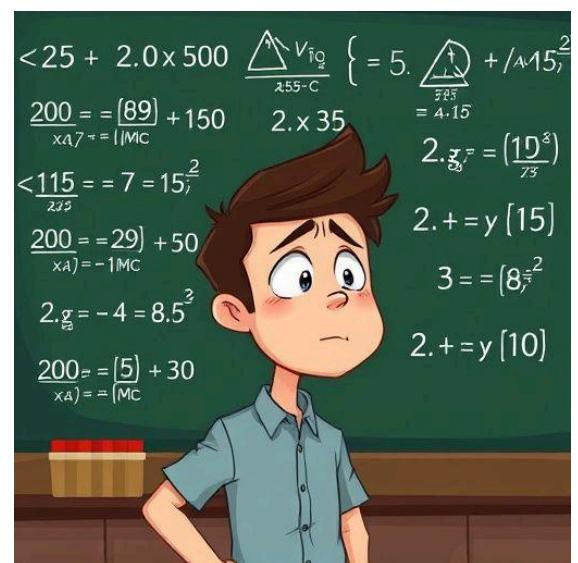
Prove that $\cos(3x) = 4\cos^3x - 3\cos x$

Hint: Express $3x$ as $(2x + x)$ and use the sum of angles formula first.

Rigorous Proof & Logic

Error Analysis:

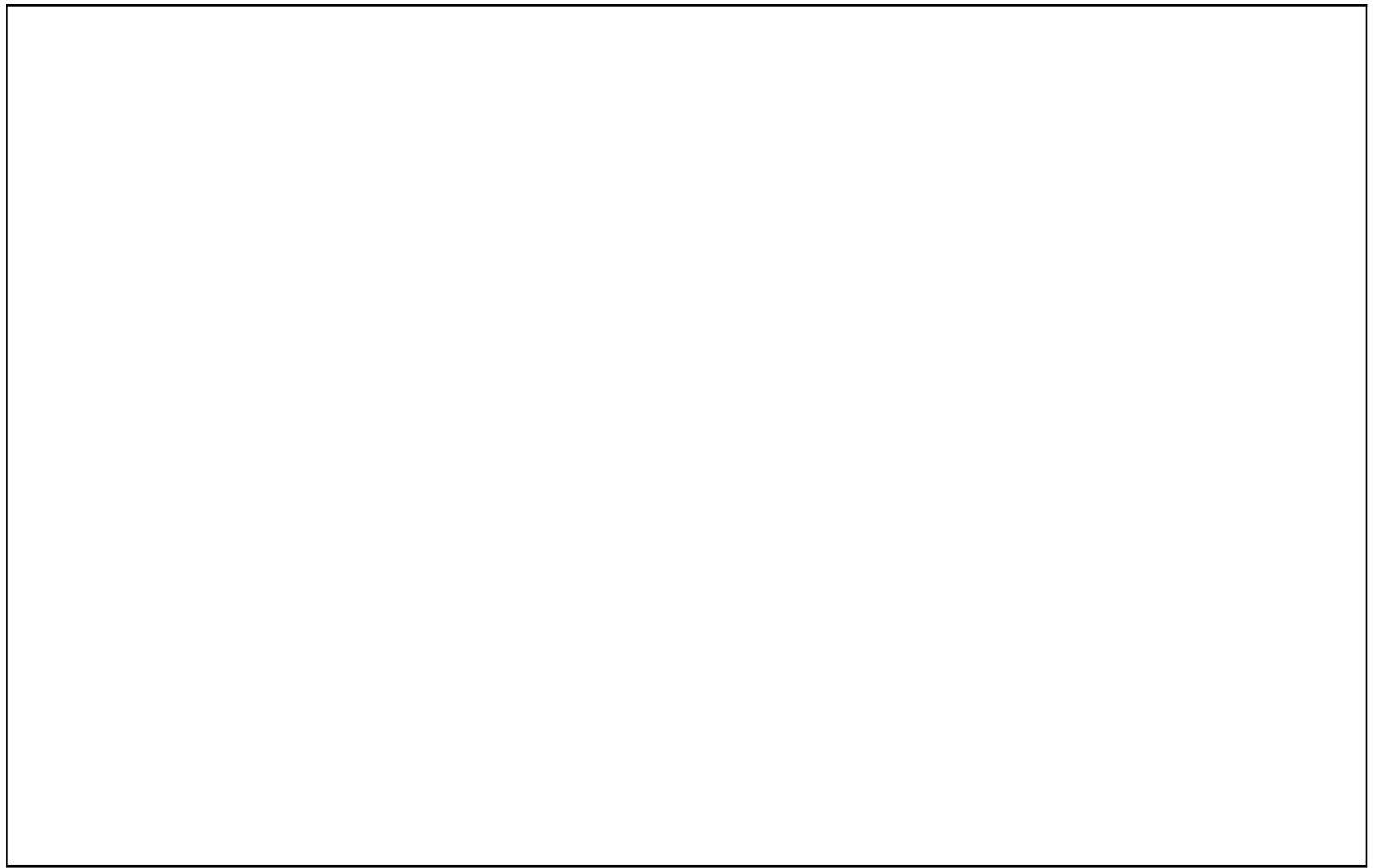
A student claims that $\sqrt{\sin^2 x + \cos^2 x} = \sin x + \cos x$. Is this student correct? Explain the algebraic flaw in their reasoning using a numerical counter-example or algebraic rule.



Synthesis Proof

Prove the following identity. This requires confident manipulation of double angle formulas to group and factor terms.

$$(1 - \cos 2x + \sin 2x) \div (1 + \cos 2x + \sin 2x) = \tan x$$



Answer Key

Conceptual Foundations

Divide every term in the primary identity by $\cos^2\theta$:

$$(\sin^2\theta/\cos^2\theta) + (\cos^2\theta/\cos^2\theta) = (1/\cos^2\theta)$$

$$\tan^2\theta + 1 = \sec^2\theta$$

Reverse Engineering & Domain Analysis

Answers will vary. Example: $(\sin x * \sec x) / \tan x = 1$

$$(\sin x * 1/\cos x) / (\sin x/\cos x) = \tan x / \tan x = 1$$

The original expression contains $\csc x$ (undefined at $0, \pi, 2\pi$) and $\sec x$ (undefined at $\pi/2, 3\pi/2$). The result $\tan x$ is undefined at $\pi/2, 3\pi/2$.

Therefore, the 'holes' occur at $x = 0, \pi, \text{ and } 2\pi$, where $\csc x$ is undefined but $\tan x (0)$ would be valid.

Extending Formulas

Answer:

$$\begin{aligned} \cos(2x+x) &= \cos 2x \cos x - \sin 2x \sin x \\ &= (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x \\ &= 2\cos^3 x - \cos x - 2\sin^2 x \cos x \\ &= 2\cos^3 x - \cos x - 2(1-\cos^2 x)\cos x \\ &= 2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x \\ &= 4\cos^3 x - 3\cos x \end{aligned}$$

Rigorous Proof & Logic

Incorrect. The student assumes that $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$, which is false.

$$\text{LHS} = \sqrt{1} = 1.$$

$$\text{RHS} = \sin x + \cos x \text{ (which varies).}$$

At $x=0$, LHS=1, RHS=1 (coincidentally true).

At $x=\pi$, LHS=1, RHS=-1 (false).

$$\text{Numerator: } (1 - (1-2\sin^2 x) + 2\sin x \cos x) = 2\sin^2 x + 2\sin x \cos x = 2\sin x(\sin x + \cos x)$$

$$\text{Denominator: } (1 + (2\cos^2 x - 1) + 2\sin x \cos x) = 2\cos^2 x + 2\sin x \cos x = 2\cos x(\cos x + \sin x)$$

$$\text{Result: } (2\sin x(\sin x + \cos x)) / (2\cos x(\cos x + \sin x)) = \sin x / \cos x = \tan x$$